
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #4

Game engine architecture

• At the beginning of game programming, the

concept of game engine did not exist

– software was specialized for application and

hardware

• Now game structure is fully featured,

reusable and kit-oriented

– robustness improved in long term

– faster to develop new games

– earn money by selling engines

– but look alike games

3

History

• The term game engine arose in the mid 90’s

– in reference to the first FPS games (Doom and

Wolfenstein)

– separation between software components, art

assets, game worlds and game rules

4

History

Doom - Id Software Wolfenstein - Raven Software

• In the end 90’s, games are designed with

reuse and modding

– examples: Quake 3 arena and Unreal

– customable via scripts

– secondary revenue for the studio: creating

middleware for game industry is viable

5

History

Quake 3 Arena - Id Software Unreal – Epic Games

• Separation between game and its engine is
blurry

– depends on the development decisions

– engine should be reserved to describe the reusable
parts of a game

• The perfect virtual game engine has not yet
been created

– always requires adjustments to the content

– genre and platform oriented which is useful if you
find the right one for your goals

– but in the right way thanks to ever-faster hardware
allowing to do more in the same amount of time

6

What is a game engine?

• Architecture patterns of components are
emerging

– graphics and rendering

– collision and physics

– animation and AI

– audio, input and resources managers

– networking and multiplayer

– scripting and data-driven systems

• Simplify development process

• Run on multiple platforms

7

What is a game engine?

• Engineers
– design and implement the software (you!)

• Artists
– produce visual and audio content

• Game designers
– define the gameplay: story, goals, game world ...

• Producers
– schedule and human resources

• Publishers and studios
– own and distribute the product

• Other staff
– marketing, administrative, IT

8

Typical game team

• Engines are typically genre specific, but

large overlap

– user input, visual rendering ...

• Example

– Unreal Engine (originally for FPS) used in

• Grimm (Spicy Horse): action-adv.

• Gears of War (Epic Games): TPS

• Speed Star (Acro Games): race

9

Engines across genres

• FPS
– efficient rendering, physics-based animation and AI of NPCs

• Platformers & TPS
– dynamic world, high fidelity animation of main character, camera

collision system

• Fighting games
– animation database, accurate user input, character animation

• Racing games
– LoD, rendering, rigid body physics and deformations

• Real-time strategy (RTS)
– crowds, evolving environment, complex AI

• Massively multiplayer online games (MMOG)
– intensively use of network, data optimization, memory and account

management (persistent world), VoIP service

• And more: sport games, RPG, serious games, simulations,
puzzles and cards, web-based games ...

10

Genre technology requirements

• Id Software’s Quake Engine
– started in 1992 with Wolfenstein

– freely available open source (Quake I and II)

– in C, a bit outdated

• Epic Games’ Unreal Engine
– started in 1998 with Unreal

– richest features and easy-to-use tools in UE3

• Valve’s Source Engine
– drives Half-Life and sequels

– complete graphics capabilities and tool set

• Microsoft’s XNA Engine
– development platform

– to easily create and share games

– in C#, for PC and Xbox360

11

Commercial game engines

• C4 Engine

• Torque Game Engine

• 3DGame Studio

• TV3D SDK

• Leadwerks Engine

• Unity

• ShiVa Engine

• Esenthel Engine

• DX Studio

• NeoAxis Engine

• and more

12

Commercial games engines

C4
Torque

3DGame TV3D

Leadwerks Unity

Esenthel

NeoAxis

• In-house engines
– many studios use their own engine

• Ex: Ubisoft’s Anvil

– often platform and genre dependent

• Open source engines
– GPL and LGPL license

– Examples
• Panda3D

• Yake (OGRE 3D)

• Crystal Space

• Blender game

• Irrlicht

• and more

13

Other engines

Panda3D

Crystal Space

Blender

OGRE

Irrlicht

Anvil

• Why use an existing game engine

– Less development time required

– Less testing and debugging

– Many features directly available

– Better focus on the game design

• Why not use an existing game engine

– No control over the implementation of features

– Adding features not yet in the game engine might
be time consuming

– Dependent on other licensing scheme for release

– Other libraries/toolkits linked with the game engine
(physics, AI…)

14

Use existing game engine or not ?

15

Runtime engine architecture

Your Game

Game Engine API

Hardware Abstraction Layer – DirectX, OpenGL ...

Hardware Layer – sound card, graphics card, physics card, memory, HD ...

Graphics

engine

and

render

Collision

and

physics

engine

Animation

engine

AI

engine

Audio

manager

Core

and

script

Network

and

multiplayer

...

• Physical

– Graphics card

– Sound card

– Physics card

– Input devices (keyboard, mouse, joysticks,

game pads, steering wheels, remote controllers,

cameras …)

• Drivers

– Low level interface

16

Hardware layer

• Rather simple

– Monitors input devices and buffers any data

received

– Displays menus and online help (can nowadays

be very complex)

• Should be reusable, especially as a part of a

game engine

17

User Interface

• Most graphics engine are built on top of

hardware interface libraries

– Glide: 3D graphics SDK, outdated

– OpenGL: widely used, multiplatform

– DirectX: Microsoft’s 3D graphics SDK

– libgcm+Edge: PlayStation3 graphics interface

18

Graphics engine

• Higher level interface, tuned to a particular graphics
and game type
– Sprite-based

– Isometric

– Full 3D

• Can deal with higher level modeling concepts
– Sprites

– Solids

– Characters (articulated)

• Handles more complicated display aspects
– Mini map

– Multiple views

– Overlays

– Special effects

19

Graphics engine

• Graphics engine is used to model the data

• Rendering performs their visual feedback

– depends on the graphics hardware (card) and

graphics engine

• Takes care of

– low level and optimized scene graph exploration

and rendering

– visual effects (particle, mapping, dynamic

shadows, HDR effect, ...)

– front end (HUD, menus, GUI, video)

20

Rendering

21

Rendering

+ + =

dynamic shadow

(Cry Engine 2) octree representation

HUD (Monkey Island 4)
particle systems

• Handles the simulation of the world
– Physical behavior (gravity, motion laws ...)

– Collisions

– Terrain changes

– Ragdoll characters

– Explosions

– Object breaking and destruction

• Physics is more and more integrated into the
gameplay and game subsystems
– Physics-based animation

– Interaction with objects using physics

• Limited or non-existent in simple games

22

Collision and physics engine

• Some SDKs

– Havok

– Open Dynamics Engine (ODE)

– Tokamak

– PhysX (Nvidia/Ageia)

• software SDK

• hardware card (PPU)

23

Collision and physics engine
Havok (Diablo 3)

PhysX (Mafia II)

ODE (Call of Juarez)

Tokamak (Hollow) PhysX card (Asus)

• Partially linked to physics engine

• Handles off-line

– motion capture and retargeting

– motion editing and annotation

• Handles real-time

– sprite / texture animation

– vertex animation by skinning

– rigid body and skeletal motion
• generation (ex: reactive character)

• transition and blending (ex: walk to run)

• adaptation (ex: reaching constraints, pushing, gazing)

24

Animation engine

• Animation packages

– Granny, used in over 2,000 games

– Havok Animation, extension of Havok SDK

– Edge, for PS3

– Endorphin (Maya plug-in) / Euphoria (real-time)

include biomechanical models

25

Animation engine

Granny Havok Animation Euphoria

• Behavior and interaction

– dialogue (scripted or generated)

• Spatial displacements

– obstacle avoidance, path planning

• Strategies

– Hiding, attack / defense, grouping

• Decision making

– scenario based or generated in real-time

• Crowd behaviors

– simulation of panics, riots, high density areas

26

AI engine

• Agent-based approach including the loop

– perception: senses input (view), dialogues...

– decision: AI core, rules/learning process

– action: execute (sequence of) operation(s)

27

AI engine

Perception

Decision

Action

• Some AI engines

– AI-implant (Presagis)

• AI authoring and runtime software

solution

– Kynapse (AutoDesk)

• customizable game-logic system

– DirectIA (Masa)

• generic game AI

– SimBionic, AISeek,...

28

AI engine

Conflict Zone

(Ubisoft)

• As important as graphics in the game engine

– Effects to enhance reality

– Ambience

– Clues about the gameplay

• Sound formats

– wave (high quality, memory intensive, fast)

– mp3 (high quality, compressed, slower)

– midi (low quality, low storage, adaptable)

– CD (very high quality, fast, limited to background

music)

29

Audio manager

• Simultaneous sounds
– Mixers

– Buffer management

– Streaming sound

• Special features
– Positional 3D sound (Dobly Surround)

– Adaptive music (DirectMusic)

• Some audio managers
– Quake and Unreal: basics

– XACT for PC and Xbox360

– Electronic Arts’ SoundRIOT

– Sony’s Scream used in PS3 titles

– IrrKlang, OpenAL, FMOD …

30

Audio manager

• To allow multiple players to play together

within a shared virtual world

– Single-screen multiplayer

• multi devices, one camera

– Split-screen multiplayer

• multiple HID and cameras

– Networked multiplayer

• multiple computers networked

– Massively multiplayer

• central servers, persistent world

31

Networking

Gauntlet

(Atari Games)

Super Mario Kart

(Nintendo)

Counter Strike

(Sierra Studio)

World of Warcraft

(Blizzard)

• Data have to be transferred between
players/computers

– efficiency is the key

– memory management critical in MMOG

• Has a profound impact on the design of the
game engine

– on world modeling, rendering, HID, animation...

• Conversion from

– single player to multiplayer is difficult

– multiplayer to single player is often trivial

• Networking managers: RakNet, GNet, GNE

32

Networking

• The core system usually implements

– an event system to communicate between

objects

– a scripting system to model the game logic (no

rebuilt of the program)

• Gameplay is implemented in the native

language of the engine and/or with scripts

– refers to world actions and rules, character

abilities, goal and objectives of the game

33

Core and script

• Scripting languages in game engines

– Advantages

• Easy control of many (or all) features in the game

engine

• Scripting language often provides full OO control

• Promotes data-driven design

– Disadvantages

• Performance

• Development support tools

• Learning curve

34

Core and script

• Common languages used for scripting
– Python

 http://www.python.org

– Lua

 http://www.lua.org

– GameMonkey

 http://www.somedude.net/gamemonkey

– AngelScript

 http://www.angelcode.com/angelscript

35

Core and script

• What belongs to scripting and what belongs to
the engine?
– Engine

• Graphics
– rendering

– shadows/lighting

– occlusion culling

• Physics
– dynamics

– collision response

– raycasting

• AI
– pathfinding

– fuzzy controllers

– planning

36

Core and script

– Script
• Graphics

– time-of-day

– add/remove lights

– loading/moving objects

• Physics
– object mass/friction

– collision events

– raycast events

• AI
– path selection

– decision making

– goals/objectives

• To process the I/O from/to the player

– keyboard, mouse, joystick/pad, controllers

• Driver of the hardware

– get physical input

– customizable mapping to actions

– recognition of chords, sequences and gestures

37

Human interfaces devices (HID)

Microsoft

SideWinter 2

Sony PS3

joypad

Nintendo

Wiimote

Sony PS Move

controller

Microsoft Kinect

camera

• Game engines often integrates commercial

or in-house tools to

– time parts of the code

– profile statistics in real-time

– dump performance stats and memory use

– control debug statements

– record events and play them back

38

Profiling and debugging tools

• Not considered as game engine components

• 3D models / geometry data / animation
– Maya, 3ds Max, Blender, SoftImage, ZBrush ...

• Audio data
– Sound Forge, Audacity, ...

• Game world data and editor
– Radiant (Quake), Hammer (Half-Life), UnrealEd (Unreal)

– games provides more and more in-house world editor

– very cheap way to extend the content of the game and
make its life time longer

• Data are usually processed (simplified and
encrypted) after exportation from in-house or
commercial software and then loaded in-game

39

Data creation tools

• Graphics engine and rendering

– Geometric Algorithms, Computer Vision

• Collision and physics engine

– Game physics

• Animation engine

– Motion and manipulation, Computer Animation

• AI engine

– Games and Agents, Intelligent agents, Common
sense reasoning, Multi-agent programming

• Network engine

– Algorithms and networks

40

To go further – UU master courses

End of lecture #4

Next lecture

The game loop

